与SQL比较
大多数示例将使用tips
pandas测试中找到的数据集。我们将数据读入名为tips的DataFrame中,并假设我们有一个具有相同名称和结构的数据库表。
In [3]: url = ('https://raw.github.com/pandas-dev'
...: '/pandas/master/pandas/tests/data/tips.csv')
...:
In [4]: tips = pd.read_csv(url)
In [5]: tips.head()
Out[5]:
total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
4 24.59 3.61 Female No Sun Dinner 4
SELECT
在SQL中,使用您要选择的以逗号分隔的列列表(或*
选择所有列)来完成选择:
SELECT total_bill, tip, smoker, time
FROM tips
LIMIT 5;
使用pandas,通过将列名列表传递给DataFrame来完成列选择:
In [6]: tips[['total_bill', 'tip', 'smoker', 'time']].head(5)
Out[6]:
total_bill tip smoker time
0 16.99 1.01 No Dinner
1 10.34 1.66 No Dinner
2 21.01 3.50 No Dinner
3 23.68 3.31 No Dinner
4 24.59 3.61 No Dinner
在没有列名列表的情况下调用DataFrame将显示所有列(类似于SQL*
)。
WHERE
SQL中的过滤是通过WHERE子句完成的。
SELECT *
FROM tips
WHERE time = 'Dinner'
LIMIT 5;
DataFrame可以通过多种方式进行过滤; 最直观的是使用 布尔索引。
In [7]: tips[tips['time'] == 'Dinner'].head(5)
Out[7]:
total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
4 24.59 3.61 Female No Sun Dinner 4
上面的语句只是将一个 Series
的 True / False 对象传递给 DataFrame,返回所有带有True的行。
In [8]: is_dinner = tips['time'] == 'Dinner'
In [9]: is_dinner.value_counts()
Out[9]:
True 176
False 68
Name: time, dtype: int64
In [10]: tips[is_dinner].head(5)
Out[10]:
total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
4 24.59 3.61 Female No Sun Dinner 4
就像SQL的OR和AND一样,可以使用|将多个条件传递给DataFrame (OR)和&(AND)。
-- tips of more than $5.00 at Dinner meals
SELECT *
FROM tips
WHERE time = 'Dinner' AND tip > 5.00;
# tips of more than $5.00 at Dinner meals
In [11]: tips[(tips['time'] == 'Dinner') & (tips['tip'] > 5.00)]
Out[11]:
total_bill tip sex smoker day time size
23 39.42 7.58 Male No Sat Dinner 4
44 30.40 5.60 Male No Sun Dinner 4
47 32.40 6.00 Male No Sun Dinner 4
52 34.81 5.20 Female No Sun Dinner 4
59 48.27 6.73 Male No Sat Dinner 4
116 29.93 5.07 Male No Sun Dinner 4
155 29.85 5.14 Female No Sun Dinner 5
170 50.81 10.00 Male Yes Sat Dinner 3
172 7.25 5.15 Male Yes Sun Dinner 2
181 23.33 5.65 Male Yes Sun Dinner 2
183 23.17 6.50 Male Yes Sun Dinner 4
211 25.89 5.16 Male Yes Sat Dinner 4
212 48.33 9.00 Male No Sat Dinner 4
214 28.17 6.50 Female Yes Sat Dinner 3
239 29.03 5.92 Male No Sat Dinner 3
-- tips by parties of at least 5 diners OR bill total was more than $45
SELECT *
FROM tips
WHERE size >= 5 OR total_bill > 45;
# tips by parties of at least 5 diners OR bill total was more than $45
In [12]: tips[(tips['size'] >= 5) | (tips['total_bill'] > 45)]
Out[12]:
total_bill tip sex smoker day time size
59 48.27 6.73 Male No Sat Dinner 4
125 29.80 4.20 Female No Thur Lunch 6
141 34.30 6.70 Male No Thur Lunch 6
142 41.19 5.00 Male No Thur Lunch 5
143 27.05 5.00 Female No Thur Lunch 6
155 29.85 5.14 Female No Sun Dinner 5
156 48.17 5.00 Male No Sun Dinner 6
170 50.81 10.00 Male Yes Sat Dinner 3
182 45.35 3.50 Male Yes Sun Dinner 3
185 20.69 5.00 Male No Sun Dinner 5
187 30.46 2.00 Male Yes Sun Dinner 5
212 48.33 9.00 Male No Sat Dinner 4
216 28.15 3.00 Male Yes Sat Dinner 5
In [13]: frame = pd.DataFrame({'col1': ['A', 'B', np.NaN, 'C', 'D'],
....: 'col2': ['F', np.NaN, 'G', 'H', 'I']})
....:
In [14]: frame
Out[14]:
col1 col2
0 A F
1 B NaN
2 NaN G
3 C H
4 D I
假设我们有一个与上面的DataFrame结构相同的表。我们只能col2
通过以下查询看到IS NULL 的记录:
SELECT *
FROM frame
WHERE col2 IS NULL;
In [15]: frame[frame['col2'].isna()]
Out[15]:
col1 col2
1 B NaN
获取col1
IS NOT NULL的项目可以完成notna()
。
SELECT *
FROM frame
WHERE col1 IS NOT NULL;
In [16]: frame[frame['col1'].notna()]
Out[16]:
col1 col2
0 A F
1 B NaN
3 C H
4 D I
如果要选择某列等于多个数值或者字符串时,要用到.isin() 平时使用最多的筛选应该是字符串的模糊筛选,在SQL语句里用的是like,在pandas里我们可以用.str.contains()来实现
GROUP BY
在pandas中,SQL的GROUP BY操作使用类似命名的
groupby()
方法执行。groupby()
通常是指我们想要将数据集拆分成组,应用某些功能(通常是聚合),然后将这些组合在一起的过程。
常见的SQL操作是获取整个数据集中每个组中的记录数。例如,有一个需要向我们提供提示中的性别的数量的查询语句:
SELECT sex, count(*)
FROM tips
GROUP BY sex;
/*
Female 87
Male 157
*/
在 pandas 中可以这样:
In [17]: tips.groupby('sex').size()
Out[17]:
sex
Female 87
Male 157
dtype: int64
请注意,在我们使用的pandas代码中size()
,没有
count()
。这是因为
count()
将函数应用于每个列,返回每个列中的记录数。not null
In [18]: tips.groupby('sex').count()
Out[18]:
total_bill tip smoker day time size
sex
Female 87 87 87 87 87 87
Male 157 157 157 157 157 157
或者,我们可以将该count()
方法应用于单个列:
In [19]: tips.groupby('sex')['total_bill'].count()
Out[19]:
sex
Female 87
Male 157
Name: total_bill, dtype: int64
也可以一次应用多个功能。例如,假设我们希望查看提示量与星期几的不同之处 - agg()
允许您将字典传递给分组的DataFrame,指示要应用于特定列的函数。
SELECT day, AVG(tip), COUNT(*)
FROM tips
GROUP BY day;
/*
Fri 2.734737 19
Sat 2.993103 87
Sun 3.255132 76
Thur 2.771452 62
*/
In [20]: tips.groupby('day').agg({'tip': np.mean, 'day': np.size})
Out[20]:
tip day
day
Fri 2.734737 19
Sat 2.993103 87
Sun 3.255132 76
Thur 2.771452 62
通过将列列表传递给groupby()
方法来完成多个列的分组
。
SELECT smoker, day, COUNT(*), AVG(tip)
FROM tips
GROUP BY smoker, day;
/*
smoker day
No Fri 4 2.812500
Sat 45 3.102889
Sun 57 3.167895
Thur 45 2.673778
Yes Fri 15 2.714000
Sat 42 2.875476
Sun 19 3.516842
Thur 17 3.030000
*/
In [21]: tips.groupby(['smoker', 'day']).agg({'tip': [np.size, np.mean]})
Out[21]:
tip
size mean
smoker day
No Fri 4.0 2.812500
Sat 45.0 3.102889
Sun 57.0 3.167895
Thur 45.0 2.673778
Yes Fri 15.0 2.714000
Sat 42.0 2.875476
Sun 19.0 3.516842
Thur 17.0 3.030000
JOIN
可以使用join()
或执行JOIN merge()
。默认情况下,
join()
将在其索引上加入DataFrame。每个方法都有参数,允许您指定要执行的连接类型(LEFT,RIGHT,INNER,FULL)或要连接的列(列名称或索引)。
In [22]: df1 = pd.DataFrame({'key': ['A', 'B', 'C', 'D'],
....: 'value': np.random.randn(4)})
....:
In [23]: df2 = pd.DataFrame({'key': ['B', 'D', 'D', 'E'],
....: 'value': np.random.randn(4)})
....:
假设我们有两个与DataFrames名称和结构相同的数据库表。
现在让我们来看看各种类型的JOIN。
INNER JOIN
SELECT *
FROM df1
INNER JOIN df2
ON df1.key = df2.key;
# merge performs an INNER JOIN by default
In [24]: pd.merge(df1, df2, on='key')
Out[24]:
key value_x value_y
0 B -0.282863 1.212112
1 D -1.135632 -0.173215
2 D -1.135632 0.119209
merge()
当您想要将一个DataFrame列与另一个DataFrame索引连接时,还会为这些情况提供参数。
In [25]: indexed_df2 = df2.set_index('key')
In [26]: pd.merge(df1, indexed_df2, left_on='key', right_index=True)
Out[26]:
key value_x value_y
1 B -0.282863 1.212112
3 D -1.135632 -0.173215
3 D -1.135632 0.119209
LEFT OUTER JOIN
-- show all records from df1
SELECT *
FROM df1
LEFT OUTER JOIN df2
ON df1.key = df2.key;
# show all records from df1
In [27]: pd.merge(df1, df2, on='key', how='left')
Out[27]:
key value_x value_y
0 A 0.469112 NaN
1 B -0.282863 1.212112
2 C -1.509059 NaN
3 D -1.135632 -0.173215
4 D -1.135632 0.119209
RIGHT JOIN
-- show all records from df2
SELECT *
FROM df1
RIGHT OUTER JOIN df2
ON df1.key = df2.key;
# show all records from df2
In [28]: pd.merge(df1, df2, on='key', how='right')
Out[28]:
key value_x value_y
0 B -0.282863 1.212112
1 D -1.135632 -0.173215
2 D -1.135632 0.119209
3 E NaN -1.044236
FULL JOIN
pandas还允许显示数据集两侧的FULL JOIN,无论连接列是否找到匹配项。在编写时,所有RDBMS(MySQL)都不支持FULL JOIN。
-- show all records from both tables
SELECT *
FROM df1
FULL OUTER JOIN df2
ON df1.key = df2.key;
# show all records from both frames
In [29]: pd.merge(df1, df2, on='key', how='outer')
Out[29]:
key value_x value_y
0 A 0.469112 NaN
1 B -0.282863 1.212112
2 C -1.509059 NaN
3 D -1.135632 -0.173215
4 D -1.135632 0.119209
5 E NaN -1.044236
UNION
UNION ALL可以使用concat()
。
In [30]: df1 = pd.DataFrame({'city': ['Chicago', 'San Francisco', 'New York City'],
....: 'rank': range(1, 4)})
....:
In [31]: df2 = pd.DataFrame({'city': ['Chicago', 'Boston', 'Los Angeles'],
....: 'rank': [1, 4, 5]})
....:
SELECT city, rank
FROM df1
UNION ALL
SELECT city, rank
FROM df2;
/*
city rank
Chicago 1
San Francisco 2
New York City 3
Chicago 1
Boston 4
Los Angeles 5
*/
In [32]: pd.concat([df1, df2])
Out[32]:
city rank
0 Chicago 1
1 San Francisco 2
2 New York City 3
0 Chicago 1
1 Boston 4
2 Los Angeles 5
SQL的UNION类似于UNION ALL,但是UNION将删除重复的行。
SELECT city, rank
FROM df1
UNION
SELECT city, rank
FROM df2;
-- notice that there is only one Chicago record this time
/*
city rank
Chicago 1
San Francisco 2
New York City 3
Boston 4
Los Angeles 5
*/
在 pandas 中,您可以concat()
结合使用
drop_duplicates()
。
In [33]: pd.concat([df1, df2]).drop_duplicates()
Out[33]:
city rank
0 Chicago 1
1 San Francisco 2
2 New York City 3
1 Boston 4
2 Los Angeles 5
Pandas等同于某些SQL分析和聚合函数
带有偏移量的前N行
-- MySQL
SELECT * FROM tips
ORDER BY tip DESC
LIMIT 10 OFFSET 5;
In [34]: tips.nlargest(10 + 5, columns='tip').tail(10)
Out[34]:
total_bill tip sex smoker day time size
183 23.17 6.50 Male Yes Sun Dinner 4
214 28.17 6.50 Female Yes Sat Dinner 3
47 32.40 6.00 Male No Sun Dinner 4
239 29.03 5.92 Male No Sat Dinner 3
88 24.71 5.85 Male No Thur Lunch 2
181 23.33 5.65 Male Yes Sun Dinner 2
44 30.40 5.60 Male No Sun Dinner 4
52 34.81 5.20 Female No Sun Dinner 4
85 34.83 5.17 Female No Thur Lunch 4
211 25.89 5.16 Male Yes Sat Dinner 4
每组前N行
-- Oracle's ROW_NUMBER() analytic function
SELECT * FROM (
SELECT
t.*,
ROW_NUMBER() OVER(PARTITION BY day ORDER BY total_bill DESC) AS rn
FROM tips t
)
WHERE rn < 3
ORDER BY day, rn;
In [35]: (tips.assign(rn=tips.sort_values(['total_bill'], ascending=False)
....: .groupby(['day'])
....: .cumcount() + 1)
....: .query('rn < 3')
....: .sort_values(['day', 'rn']))
....:
Out[35]:
total_bill tip sex smoker day time size rn
95 40.17 4.73 Male Yes Fri Dinner 4 1
90 28.97 3.00 Male Yes Fri Dinner 2 2
170 50.81 10.00 Male Yes Sat Dinner 3 1
212 48.33 9.00 Male No Sat Dinner 4 2
156 48.17 5.00 Male No Sun Dinner 6 1
182 45.35 3.50 Male Yes Sun Dinner 3 2
197 43.11 5.00 Female Yes Thur Lunch 4 1
142 41.19 5.00 Male No Thur Lunch 5 2
同样使用 rank (method ='first') 函数
In [36]: (tips.assign(rnk=tips.groupby(['day'])['total_bill']
....: .rank(method='first', ascending=False))
....: .query('rnk < 3')
....: .sort_values(['day', 'rnk']))
....:
Out[36]:
total_bill tip sex smoker day time size rnk
95 40.17 4.73 Male Yes Fri Dinner 4 1.0
90 28.97 3.00 Male Yes Fri Dinner 2 2.0
170 50.81 10.00 Male Yes Sat Dinner 3 1.0
212 48.33 9.00 Male No Sat Dinner 4 2.0
156 48.17 5.00 Male No Sun Dinner 6 1.0
182 45.35 3.50 Male Yes Sun Dinner 3 2.0
197 43.11 5.00 Female Yes Thur Lunch 4 1.0
142 41.19 5.00 Male No Thur Lunch 5 2.0
-- Oracle's RANK() analytic function
SELECT * FROM (
SELECT
t.*,
RANK() OVER(PARTITION BY sex ORDER BY tip) AS rnk
FROM tips t
WHERE tip < 2
)
WHERE rnk < 3
ORDER BY sex, rnk;
让我们找到每个性别组(等级<3)的提示(提示<2)。请注意,使用rank(method='min')
函数时
rnk_min对于相同的提示保持不变
(如Oracle的RANK()函数)
In [37]: (tips[tips['tip'] < 2]
....: .assign(rnk_min=tips.groupby(['sex'])['tip']
....: .rank(method='min'))
....: .query('rnk_min < 3')
....: .sort_values(['sex', 'rnk_min']))
....:
Out[37]:
total_bill tip sex smoker day time size rnk_min
67 3.07 1.00 Female Yes Sat Dinner 1 1.0
92 5.75 1.00 Female Yes Fri Dinner 2 1.0
111 7.25 1.00 Female No Sat Dinner 1 1.0
236 12.60 1.00 Male Yes Sat Dinner 2 1.0
237 32.83 1.17 Male Yes Sat Dinner 2 2.0
更新(UPDATE)
UPDATE tips
SET tip = tip*2
WHERE tip < 2;
In [38]: tips.loc[tips['tip'] < 2, 'tip'] *= 2
删除(DELETE)
DELETE FROM tips
WHERE tip > 9;
在pandas中,我们选择应保留的行,而不是删除它们
In [39]: tips = tips.loc[tips['tip'] <= 9]